KISARAN INANG BAKTERIOFAG SEBAGAI AGEN PENGENDALI BAKTERI MULTIDRUG-RESISTANT (MDR)
HOST RANGE BACTERIOPHAGES AS CONTROL AGENTS FOR MULTIDRUG-RESISTANT (MDR) BACTERIA
DOI:
https://doi.org/10.51804/jsh.v9i1.16909.1-12Keywords:
bacteriophage, antibiotic resistance, multidrug-resistant, host rangeAbstract
Antibiotic resistance has become a serious challenge in healthcare and the food industry due to the rise of multidrug-resistant (MDR) pathogenic bacteria. One promising alternative is the use of bacteriophages as a therapeutic agent, given their high specificity and ability to infect and eliminate target bacteria without disrupting normal microbiota. This study aims to examine the host range of bacteriophages as a control agent for MDR bacteria through a systematic literature review approach. Data were collected from indexed scientific journals discussing bacteriophage-bacteria interactions, the characterization of monovalent and polyvalent phages, and the effectiveness of phage therapy. The review findings indicate that bacteriophage adsorption mechanisms depend on specific receptors on the bacterial cell wall. Their host range is categorized as narrow (monovalent) or broad (polyvalent), with polyvalent phages being preferred in therapy due to their ability to infect multiple MDR bacterial genera. This study highlights that an in-depth understanding of bacteriophage host range is crucial for developing effective and sustainable phage therapy. Beyond clinical applications, bacteriophages also hold potential for food safety and pathogen detection. Future research is needed to explore the optimization of phage combinations and genetic engineering to enhance their effectiveness in combating MDR infections.
References
Abedon, S., & Thomas-Abedon, C. (2010). Phage Therapy Pharmacology. Current Pharmaceutical Biotechnology, 11(1), 28–47. https://doi.org/10.2174/138920110790725410
Ackermann, H. W. (1998). Tailed bacteriophages: the order caudovirales. Advances in Virus Research, 51, 135–201. https://doi.org/10.1016/s0065-3527(08)60785-x
Ackermann, H. W. (2003). Bacteriophage observations and evolution. Research in Microbiology, 154(4), 245–251. https://doi.org/10.1016/S0923-2508(03)00067-6
Ackermann, H. W. (2006). Classification of bacteriophages. The Bacteriophages, 2, 8-16.
Ahamed, S. K. T., Roy, B., Basu, U., Dutta, S., Ghosh, A. N., Bandyopadhyay, B., & Giri, N. (2019). Genomic and proteomic characterizations of sfin-1, a novel lytic phage infecting multidrug-resistant shigella spp. And escherichia coli C. Frontiers in Microbiology, 10(AUG), 1–19. https://doi.org/10.3389/fmicb.2019.01876
Altamirano, F. G., Forsyth, J. H., Patwa, R., Kostoulias, X., Trim, M., Subedi, D., Archer, S., Morris, F. C., Oliveira, C., Kielty, L., Korneev, D., O’Bryan, M. K., Lithgow, T. J., Peleg, A. Y., & Barr, J. J. (2020). Bacteriophages targeting Acinetobacter baumannii capsule induce antimicrobial resensitization. BioRxiv, March, 1–28.
Auad, L., De Ruiz Holgado, A. A. P., Forsman, P., Alatossava, T., & Raya, R. R. (1997). Isolation and Characterization of a New Lactobacillus delbrueckii ssp. bulgaricus Temperate Bacteriophage. Journal of Dairy Science, 80(11), 2706–2712. https://doi.org/10.3168/jds.s0022-0302(97)76231-3
Azam, A. H., Hoshiga, F., Takeuchi, I., Miyanaga, K., & Tanji, Y. (2018). Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ?SA012 and ?SA039. Applied Microbiology and Biotechnology, 102(20), 8963–8977. https://doi.org/10.1007/s00253-018-9269-x
Bertozzi Silva, J., Storms, Z., & Sauvageau, D. (2016). Host receptors for bacteriophage adsorption Downloaded from. FEMS Microbiology Letters, 363(4), fnw002.
Bhetwal, A., Maharjan, A., Shakya, S., Satyal, D., Ghimire, S., Khanal, P. R., & Parajuli, N. P. (2017). Isolation of Potential Phages against Multidrug-Resistant Bacterial Isolates: Promising Agents in the Rivers of Kathmandu, Nepal. BioMed Research International, 2017. https://doi.org/10.1155/2017/3723254
Bradley, D. E. (1967). Ultrastructure of bacteriophage and bacteriocins. Bacteriological Reviews, 31(4), 230–314. https://doi.org/10.1128/mmbr.31.4.230-314.1967
Chan, B., Stanley, G., Kortright, K., Modak, M., Ott, I., Sun, Y., Würstle, S., Grun, C., Kazmierczak, B., Rajagopalan, G., Harris, Z., Britto, C., Stewart, J., Talwalkar, J., Appell, C., Chaudary, N., Jagpal, S., Jain, R., Kanu, A., … Koff, J. (2023). Personalized Inhaled Bacteriophage Therapy Decreases Multidrug-Resistant Pseudomonas aeruginosa. MedRxiv, 2023.01.23.22283996. https://www.medrxiv.org/content/10.1101/2023.01.23.22283996v1%0Ahttps://www.medrxiv.org/content/10.1101/2023.01.23.22283996v1.abstract
Chatterjee, A., Johnson, C. N., Luong, P., Hullahalli, K., McBride, S. W., Schubert, A. M., Palmer, K. L., Carlson, P. E., & Duerkop, B. A. (2019). Bacteriophage resistance alters antibiotic-mediated intestinal expansion of enterococci. Infection and Immunity, 87(6). https://doi.org/10.1128/IAI.00085-19
Edgar, R., Friedman, N., Shahar, M. M., & Qimron, U. (2012). Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Applied and Environmental Microbiology, 78(3), 744–751. https://doi.org/10.1128/AEM.05741-11
Feng, T., Leptihn, S., Dong, K., Loh, B., Zhang, Y., Stefan, M. I., Li, M., Guo, X., & Cui, Z. (2021). JD419, a Staphylococcus aureus Phage With a Unique Morphology and Broad Host Range. Frontiers in Microbiology, 12(April), 1–12. https://doi.org/10.3389/fmicb.2021.602902
Gaffar, A., Jatmiko, Y. D., & Prihanto, A. A. (2024). Isolation and Characterization of Salmonella Typhimurium Lytic Bacteriophages from Fermented Shrimp Paste (Terasi). AIP Conference Proceedings, 3001(1), 1–9. https://doi.org/10.1063/5.0183898
Hesse, S., Rajaure, M., Wall, E., Johnson, J., Bliskovsky, V., & Gottesman, S. (2020). Phage Resistance in Multidrug-Resistant Klebsiella pneumoniae ST258 Evolves via Diverse Mutations That Culminate in Impaired Adsorption. MBio, 11(1), e02530-19.
Hitchcock, N. M., Devequi Gomes Nunes, D., Shiach, J., Valeria Saraiva Hodel, K., Dantas Viana Barbosa, J., Alencar Pereira Rodrigues, L., Coler, B. S., Botelho Pereira Soares, M., & Badaró, R. (2023). Current Clinical Landscape and Global Potential of Bacteriophage Therapy. Viruses, 15(4). https://doi.org/10.3390/v15041020
Hyman, P. (2019). Phages for phage therapy: Isolation, characterization, and host range breadth. Pharmaceuticals, 12(1). https://doi.org/10.3390/ph12010035
Khorshidtalab, M., Durukan, ?., Tufekci, E. F., Nas, S. S., Abdurrahman, M. A., & Kiliç, A. O. (2022). Isolation and Characterization of Lytic Bacteriophages from Wastewater with Phage Therapy Potentials Against Gram-Negative Bacteria. Eurasian Journal of Medicine, 54(2), 157–164. https://doi.org/10.5152/eurasianjmed.2022.21010
Kim, S. H., Adeyemi, D. E., & Park, M. K. (2021). Characterization of a new and efficient polyvalent phage infecting e. Coli o157:H7, salmonella spp., and shigella sonnei. Microorganisms, 9(10). https://doi.org/10.3390/microorganisms9102105
Kong, H., Yu, F., Zhang, W., & Li, X. (2017). Clinical and microbiological characteristics of pyogenic liver abscess in a tertiary hospital in East China. Medicine (United States), 96(37). https://doi.org/10.1097/MD.0000000000008050
Kulpakko, J., Juusti, V., Rannikko, A., & Hänninen, P. E. (2022). Detecting disease associated biomarkers by luminescence modulating phages. Scientific Reports, 12(1), 1–8. https://doi.org/10.1038/s41598-022-06433-y
Le, S., He, X., Tan, Y., Huang, G., Zhang, L., Lux, R., Shi, W., & Hu, F. (2013). Mapping the Tail Fiber as the Receptor Binding Protein Responsible for Differential Host Specificity of Pseudomonas aeruginosa Bacteriophages PaP1 and JG004. PLoS ONE, 8(7), 1–8. https://doi.org/10.1371/journal.pone.0068562
Lin, L., Han, J., Ji, X., Hong, W., Huang, L., & Wei, Y. (2011). Isolation and characterization of a new bacteriophage MMP17 from Meiothermus. Extremophiles, 15(2), 253–258. https://doi.org/10.1007/s00792-010-0354-z
Lin, Y., Cheng, Y., Chuang, C., Chou, S., Liu, W., Huang, C., & Yang, T. (2018). Molecular and Clinical Characterization of Multidrug Resistant and Hypervirulent Klebsiella pneumoniae Strains from Liver Abscess in Taiwan. Antimicrobial Agents and Chemotherapy, 64(5), e00174-20.
Liu, C. K., Liu, C. P., Leung, C. H., & Sun, F. J. (2011). Clinical and microbiological analysis of adult perianal abscess. Journal of Microbiology, Immunology and Infection, 44(3), 204–208. https://doi.org/10.1016/j.jmii.2011.01.024
Lu, Z., Breidt, F., Fleming, H. P., Altermann, E., & Klaenhammer, T. R. (2003). Isolation and characterization of a Lactobacillus plantarum bacteriophage, ?JL-1, from a cucumber fermentation. International Journal of Food Microbiology, 84(2), 225–235. https://doi.org/10.1016/S0168-1605(03)00111-9
Mapes, A. C., Trautner, B. W., Liao, K. S., & Ramig, R. F. (2016). Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa . Bacteriophage, 6(1), e1096995. https://doi.org/10.1080/21597081.2015.1096995
McCallin, S., Alam Sarker, S., Barretto, C., Sultana, S., Berger, B., Huq, S., Krause, L., Bibiloni, R., Schmitt, B., Reuteler, G., & Brüssow, H. (2013). Safety analysis of a Russian phage cocktail: From MetaGenomic analysis to oral application in healthy human subjects. Virology, 443(2), 187–196. https://doi.org/10.1016/j.virol.2013.05.022
Moineau, S. (2013). “Bacteriophage.” Brenner’s encyclopedia of genetics.
Morello, E., Saussereau, E., Maura, D., Huerre, M., Touqui, L., & Debarbieux, L. (2011). Pulmonary bacteriophage therapy on pseudomonas aeruginosa cystic fibrosis strains: First steps towards treatment and prevention. PLoS ONE, 6(2). https://doi.org/10.1371/journal.pone.0016963
Mudaningrat, A., Indriani, B. S., Istianah, N., Retnoningsih, A., & Rahayu, E. S. (2023). Literature Review: Pemanfaatan Jenis-Jenis Syzigium di Indonesia. Jurnal Biologi Dan Pembelajarannya (JB&P), 10(2), 135–156. https://doi.org/10.29407/jbp.v10i2.20815
Nagel, T., Musila, L., Muthoni, M., Nikolich, M., Nakavuma, J. L., & Clokie, M. R. (2022). Phage banks as potential tools to rapidly and cost-effectively manage antimicrobial resistance in the developing world. Current Opinion in Virology, 53, 101208. https://doi.org/10.1016/j.coviro.2022.101208
Ngiam, L., Schembri, M. A., Weynberg, K., & Guo, J. (2021). Bacteriophage isolated from non-target bacteria demonstrates broad host range infectivity against multidrug-resistant bacteria. Environmental Microbiology, 23(9), 5569–5586. https://doi.org/10.1111/1462-2920.15714
Park, J. Y., Moon, B. Y., Park, J. W., Thornton, J. A., Park, Y. H., & Seo, K. S. (2017). Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Scientific Reports, 7(August 2016), 1–13. https://doi.org/10.1038/srep44929
Peng, C., Hanawa, T., Azam, A. H., LeBlanc, C., Ung, P., Matsuda, T., Onishi, H., Miyanaga, K., & Tanji, Y. (2019). Silviavirus phage ?MR003 displays a broad host range against methicillin-resistant Staphylococcus aureus of human origin. Applied Microbiology and Biotechnology, 103(18), 7751–7765. https://doi.org/10.1007/s00253-019-10039-2
Sieiro, C., Areal?hermida, L., Pichardo?gallardo, Á., Almuiña?gonzález, R., de Miguel, T., Sánchez, S., Sánchez?pérez, Á., & Villa, T. G. (2020). A hundred years of bacteriophages: Can phages replace antibiotics in agriculture and aquaculture? Antibiotics, 9(8), 1–30. https://doi.org/10.3390/antibiotics9080493
Storms, Z. J., & Sauvageau, D. (2015). Modeling tailed bacteriophage adsorption: Insight into mechanisms. Virology, 485, 355–362. https://doi.org/10.1016/j.virol.2015.08.007
Sun, Y., Roznowski, A. P., Tokuda, J. M., Klose, T., Mauney, A., Pollack, L., Fane, B. A., & Rossmann, M. G. (2017). Structural changes of tailless bacteriophage ?x174 during penetration of bacterial cell walls. Proceedings of the National Academy of Sciences of the United States of America, 114(52), 13708–13713. https://doi.org/10.1073/pnas.1716614114
Sundell, K., Landor, L., Castillo, D., Middelboe, M., & Wiklund, T. (2020). Bacteriophages as Biocontrol Agents for Flavobacterium psychrophilum Biofilms and Rainbow Trout Infections. PHAGE: Therapy, Applications, and Research, 1(4), 198–204. https://doi.org/10.1089/phage.2020.0021
Szczuka, E., Szuma?a-Ka?kol, A., Siuda, A., & Kaznowski, A. (2010). Clonal analysis of Staphylococcus aureus strains isolated in obstetric-gynaecological hospital. Polish Journal of Microbiology, 59(3), 161–165. https://doi.org/10.33073/pjm-2010-025
Tahri, Hidayanti, S., Atul Ummah, N., Septiana, Y., & Dhuhana Yusuf, A. (2023). Literature Review: Winogradsky Column sebagai Metode Biologis untuk Degradasi Masker Medis (Disposable Mask). Jurnal Biologi Dan Pembelajarannya (JB&P), 10(2), 112–118. https://doi.org/10.29407/jbp.v10i2.19475
Tommasi, R., Brown, D. G., Walkup, G. K., Manchester, J. I., & Miller, A. A. (2015). ESKAPEing the labyrinth of antibacterial discovery. Nature Reviews Drug Discovery, 14(8), 529–542. https://doi.org/10.1038/nrd4572
World Health Organization. (2021). Antimicrobial Resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance#:~:text=The main drivers of antimicrobial,access to quality%2C affordable medicines%2C
Zrelovs, N., Dislers, A., & Kazaks, A. (2020). Motley Crew: Overview of the Currently Available Phage Diversity. Frontiers in Microbiology, 11(October). https://doi.org/10.3389/fmicb.2020.579452
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal SainHealth

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal SainHealth is licensed under Creative Commons Attribution 4.0 International License.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.