ANALISIS KEKUATAN BANGKU TAMAN BERBAHAN CEMENTITIOUS COMPOSITE DENGAN CAMPURAN FLY ASH DAN PASIR LIMBAH SANDBLASTING

Authors

  • M. Rizal Fahmi Politeknik Perkapalan Negeri Surabaya
  • Wiwik Dwi Pratiwi Politeknik Perkapalan Negeri Surabaya
  • Fitroh Resmi Politeknik Perkapalan Negeri Surabaya
  • Luqman Cahyono Politeknik Perkapalan Negeri Surabaya
  • Endang Fitria Rahmawati Chung Yuan Christian University
  • Hanum Wardah Anggraeni Politeknik Perkapalan Negeri Surabaya

DOI:

https://doi.org/10.51804/jiso.v8i1.67-75

Keywords:

cementitious composite, fiberglass, fly ash, park bench, sandblasting waste sand

Abstract

ABSTRAK

Meningkatnya kebutuhan akan ruang terbuka yang nyaman dan berkelanjutan mendorong inovasi dalam pemilihan material furnitur luar ruangan. Penelitian ini bertujuan untuk mengembangkan bangku taman berbahan cementitious composite ramah lingkungan dengan memanfaatkan limbah industri berupa fly ash, pasir sandblasting, dan fiberglass sebagai bahan penguat. Cementitious composite yang kuat, tahan cuaca ekstrem, tahan terhadap serangan serangga serta jamur serta fleksibilitas dalam desain membuatnya menjadi pilihan ideal untuk penggunaan di luar ruangan. Empat variasi campuran dibuat dengan substitusi fly ash sebesar 0%, 20%, 30%, dan 40%. Pembuatan spesimen sampel uji tekan dan tarik dilakukan pada 4 variasi dengan 3 kali replikasi untuk masing-masing varian. Hasil cetakan didiamkan terlebih dahulu selama 24 jam kemudian dilanjutkan dengan proses curing selama 28 hari. Seluruh spesimen uji tekan dan tarik diuji dengan menggunakan standar ASTM C-39 dan C-307. Pengujian kuat tekan dan tarik dilakukan untuk menentukan varian dengan performa mekanik terbaik. Hasil menunjukkan bahwa substitusi fly ash sebesar 20% menghasilkan kekuatan tekan dan tarik tertinggi, yaitu 30,27 MPa dan 4,16 MPa. Desain bangku taman selanjutnya disimulasikan menggunakan software Fusion 360 dengan masukan data material dari hasil uji laboratorium. Analisis menunjukkan bahwa desain memiliki nilai safety factor minimum 3,46 dan nilai von misses stress maksimum 0,884 MPa yang berada jauh di bawah batas kerusakan material. Dengan demikian, bangku taman yang dirancang terbukti aman dan layak digunakan, sekaligus berkontribusi terhadap pengurangan limbah industri dan peningkatan estetika ruang publik secara berkelanjutan.

ABSTRACT

The increasing need for comfortable and sustainable outdoor spaces drives innovation in the selection of outdoor furniture materials. This study aims to develop an environmentally friendly cementitious composite park bench by utilizing industrial waste in the form of fly ash, sandblasting sand, and fiberglass as reinforcing materials. Strong cementitious composite, resistant to extreme weather, resistant to insect and fungal attacks and flexibility in design make it an ideal choice for outdoor use. Four variations of the mixture were made with fly ash substitution of 0%, 20%, 30%, and 40%. The manufacture of compressive and tensile test sample specimens was carried out on 4 variations with 3 replications for each variant. The mold results were left for 24 hours first and then continued with a curing process for 28 days. All compressive and tensile test specimens were tested using ASTM C-39 and C-307 standards. Compressive and tensile strength tests were carried out to determine the variant with the best mechanical performance. The results showed that 20% fly ash substitution produced the highest compressive and tensile strengths, namely 30.27 MPa and 4.16 MPa. The park bench design was then simulated using Fusion 360 software with input of material data from laboratory test results. The analysis shows that the design has a minimum safety factor value of 3.46 and a maximum von misses stress value of 0.884 MPa which is far below the material damage limit. Thus, the designed park bench is proven to be safe and suitable for use, while contributing to the reduction of industrial waste and the improvement of the aesthetics of public spaces in a sustainable manner.

References

Badan Standar Nasional. (2019). SNI-2847-2019-Persyaratan-Beton-Struktural-Untuk-Bangunan-Gedung-1.

Becerra-Duitama, J. A., & Rojas-Avellaneda, D. (2022). Pozzolans: A review. Engineering and Applied Science Research, 49(4), 495–504. https://doi.org/10.14456/easr.2022.496

Bedoya, M., Rivera, F., Rico, M., Vélez, D., Urrego, A., & Hernandez, S. (2019). Sustainable Concrete Application in the Manufacture of University Urban Furniture. https://doi.org/10.1051/matecconf/2019

Fatimah, I. N., Budi, A. S., & Sangadji, S. (2018). PENGARUH KADAR FLY ASH TERHADAP KUAT TEKAN PADAHIGH VOLUME FLY ASH-SELFCOMPACTING CONCRETE (HVFA-SCC) BENDA UJI D 15 CM X 30 CM USIA 28 HARI.

Gere, J. M., & Goodno, B. J. (2009). Mechanics of Materials (7 ed.).

Gopalan, M. K., & Haque, M. N. (1989). MIX DESIGN FOR OPTIMAL STRENGTH DEVELOPMENT OF FLY ASH CONCRETE. Dalam CEMENT and CONCRETE RESEARCH (Vol. 19).

Hendrawan, A., Lusiani, & Aprilian, R. (1970). SANDBLASTING PADA KAPAL MV. BERLIAN INDAH. Saintara: Jurnal Ilmiah Ilmu-Ilmu Maritim, 4(2), 25–32. https://doi.org/10.52475/saintara.v4i2.27

Herman, F., Rau, D., Sudirman Indra, I., Erfan, M., & St, M. T. (2018). ANALISA PENGARUH PEMAKAIAN FLY ASH SEBAGAI SEMENTISIUS PADA BETON MUTU SEDANG TERHADAP KUAT TEKAN BETON (Vol. 1).

Kosior-Kazberuk, M., & Lelusz, M. (2007). Strength development of concrete with fly ash addition. Journal of Civil Engineering and Management, 13(2), 115–122. https://doi.org/10.1080/13923730.2007.9636427

Muljati, S., Triwinarto, A., Utami, N., Hermina Pusat Penelitian dan Pengembangan Upaya Kesehatan Masyarakat, dan, Penelitian dan

Pengembangan Kesehatan, B., & Kesehatan Jl Percetakan, K. R. (2016). PADA PENDUDUK INDONESIA YANG SEHAT BERDASARKAN HASIL RISKESDAS 2013 (DESCRIPTION OF MEDIAN NUMBER OF WEIGHT AND HEIGHT CLASSIFIED BY AGE GROUP ON HEALTHY INDONESIAN CITIZENS BASED ON RISKESDAS 2013 RESULT).

Putra, W. A., Olivia, M., & Saputra, E. (2020). Wandala, Ketahanan Beton Semen Portland Composite Cement (PCC) (Vol. 14, Nomor 1).

Qi, C., Weinell, C. E., Dam-Johansen, K., & Wu, H. (2021). A review of blasting waste generation and management in the ship repair industry. Dalam Journal of Environmental Management (Vol. 300). Academic Press. https://doi.org/10.1016/j.jenvman.2021.113714

Ribeiro, R. P., Jaramillo Nieves, L. J., & Bernardin, A. M. (2023). Effect of fiberglass waste and fly ash addition on the mechanical performance of Portland cement paste. Cleaner Materials, 7. https://doi.org/10.1016/j.clema.2023.100176

Talebi, H. R., Kayan, B. A., Asadi, I., Bin, Z. F., & Hassan, A. (2020). Investigation of Thermal Properties of Normal Weight Concrete for Different Strength Classes. Dalam Journal of Environmental Treatment Techniques (Vol. 2020, Nomor 3). http://www.jett.dormaj.com

Thangaraj, R., & Thenmozhi, R. (2013). Pozzaolanic reaction. 12, 315–320. www.neptjournal.com

Wang, H., Mang, H., Yuan, Y., & Pichler, B. L. A. (2019). Multiscale thermoelastic analysis of the thermal expansion coefficient and of microscopic thermal stresses of mature concrete. Materials, 12(7). https://doi.org/10.3390/ma12172689

Wang, W., Lu, C., Li, Y., & Li, Q. (2017). An investigation on thermal conductivity of fly ash concrete after elevated temperature exposure. Construction and Building Materials, 148, 148–154. https://doi.org/10.1016/j.conbuildmat.2017.05.068

Yong, L. W., & Wai, L. K. (2007). Physics Insights “O” Level (2 ed.).

Downloads

Published

2025-06-30