ESTIMASI GERAK SURGE, HEAVE DAN PITCH AUTONOMOUS UNDERWATER VEHICLE DENGAN ENSEMBLE KALMAN FILTER (EnKF)
DOI:
https://doi.org/10.51804/tesj.v3i1.392.51-56Keywords:
auv, estimasi posisi menyelam, sistem navigasi, ensemble kalman filterAbstract
Autonomous Underwater Vehicle (AUV) atau wahan air tanpa awak merupakan salah satu jenis robot bawah air yang relatif flexibel untuk eksplorasi bawah laut dan peralatan sistem pertahanan bawah laut. AUV dapat dikendalikan untuk bergerak dengan enam derajat kebebasan (6-DOF). Pengendalian AUV dibagi menjadi dua yaitu kendali kecepatan dan kendali agar mengikuti lintasan yang diinginkan. Kendali AUV agar mengikuti trajectory yang diinginkan ini biasa disebut dengan sistem navigasi atau Estimasi trajectory. Pada penelitian ini dikembangkan sistem navigasi untuk gerak menyelam dengan model 3-DOF yaitu gerak surge, heave dan pitch dengan metode Ensemble Kalman Filter (EnKF). Hasil simulasi menunjukkan bahwa metode EnKF dapat digunakan sebagai estimator gerak 3-DOF dengan menghasilkan error 0.011 m/s untuk gerak surge dan 0.009 m/s untuk gerak heave serta 0.004 rad/s untuk gerak pitch, sedangkan error posisi menyelam 0.01 m.
References
Ermayanti, Z., Apriliani, E., Nurhadi, H., & Herlambang, T. (2016). Estimate and control position autonomous Underwater Vehicle based on determined trajectory using Fuzzy Kalman Filter method. ICAMIMIA 2015 - International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation, Proceeding - In Conjunction with Industrial Mechatronics and Automation Exhibition, IMAE. https://doi.org/10.1109/ICAMIMIA.2015.7508022
Herlambang, T., Djatmiko, E. B., & Nurhadi, H. (2015). Ensemble kalman filter with a square root scheme (EnKF-SR) for trajectory estimation of AUV SEGOROGENI ITS. International Review of Mechanical Engineering, 9(6). https://doi.org/10.15866/ireme.v9i6.6341
Herlambang, T., Djatmiko, E. B., & Nurhadi, H. (2016). Navigation and guidance control system of AUV with trajectory estimation of linear modelling. ICAMIMIA 2015 - International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation, Proceeding - In Conjunction with Industrial Mechatronics and Automation Exhibition, IMAE. https://doi.org/10.1109/ICAMIMIA.2015.7508028
Herlambang, T., Nurhadi, H., & Subchan. (2014). Preliminary numerical study on designing navigation and stability control systems for ITS AUV. In Applied Mechanics and Materials (Vol. 493). https://doi.org/10.4028/www.scientific.net/AMM.493.420
Herlambang, Teguh. (2017). Design of a Navigation and Guidance System of Missile with Trajectory Estimation Using Ensemble Kalman Filter Square Root ( EnKF-SR ). Computer Applications and Information Processing Technology (CAIPT), 2017 4th International Conference On, 1–7. IEEE.
Herlambang, Teguh, Mufarrikoh, Z., Karya, D. F., & Rahmalia, D. (2018). Estimation of water level and steam temperature using ensemble Kalman filter square root ( EnKF- SR ) Estimation of water level and steam temperature using ensemble Kalman filter square root ( EnKF-SR ). Journal of Physics: Conference Series, 0–7.
Herlambang, Teguh, & Nurhadi, H. (n.d.). Position Estimation of ITSUNUSA AUV Based on Determined Trajectory using Kalman Filter ( KF ). 15–22.
Herlambang, Teguh, & Subchan. (2018). ESTIMASI GERAK TRANSLASI AUTONOMOUS UNDERWATER VEHICLE DENGAN ENSEMBLE KALMAN FILTER (EnKF). Teknika: Engineering and Sains Journal, 2(1), 41–46.
Karya, D. F., Katias, P., & Herlambang, T. (2018). Stock price estimation using ensemble Kalman Filter square root method Stock price estimation using ensemble Kalman Filter square root method. 0–6.
Loebis, D., Sutton, R., Chudley, J., & Naeem, W. (2004). Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system. Control Engineering Practice, 12(12 SPEC. ISS.), 1531–1539. https://doi.org/10.1016/j.conengprac.2003.11.008
Motwani, A. (2012). Adaptive and interval Kalman filtering techniques in autonomous surface vehicle navigation: a survey.
Oktafianto, K., Herlambang, T., Mardlijah, & Nurhadi, H. (2016). Design of Autonomous Underwater Vehicle motion control using Sliding Mode Control method. ICAMIMIA 2015 - International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation, Proceeding - In Conjunction with Industrial Mechatronics and Automation Exhibition, IMAE. https://doi.org/10.1109/ICAMIMIA.2015.7508023
Panish, R., & Taylor, M. (2011). Achieving high navigation accuracy using inertial navigation systems in autonomous underwater vehicles. OCEANS 2011 IEEE - Spain, 1–7. https://doi.org/10.1109/Oceans-Spain.2011.6003517
Downloads
Published
Issue
Section
License
With the receipt of the article by TESJ Editorial Board and the decision to be published, the copyright regarding the article will be transferred to TESJ. The copyright transfer form can be downloaded here.
TESJ has the right to multiply and distribute the article, and every author is not allowed to publish the same article published in this journal.
Teknika: Engineering and Sains Journal is licensed under a Creative Commons Attribution 4.0 International License.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.