ESTIMASI GERAK SURGE, HEAVE DAN PITCH AUTONOMOUS UNDERWATER VEHICLE DENGAN ENSEMBLE KALMAN FILTER (EnKF)

Authors

  • Teguh Herlambang Universitas Nahdlatul Ulama Surabaya http://orcid.org/0000-0001-7940-5104
  • Subchan Subchan Institut Teknologi Sepuluh Nopember
  • Hendro Nurhadi Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.51804/tesj.v3i1.392.51-56

Keywords:

auv, estimasi posisi menyelam, sistem navigasi, ensemble kalman filter

Abstract

Autonomous Underwater Vehicle (AUV) atau wahan air tanpa awak merupakan salah satu jenis robot bawah air yang relatif flexibel untuk eksplorasi bawah laut dan peralatan sistem pertahanan bawah laut. AUV dapat dikendalikan untuk bergerak dengan enam derajat kebebasan (6-DOF). Pengendalian AUV dibagi menjadi dua yaitu kendali kecepatan dan kendali agar mengikuti lintasan yang diinginkan.  Kendali AUV agar mengikuti trajectory yang diinginkan ini biasa disebut dengan sistem navigasi atau Estimasi trajectory.  Pada penelitian ini dikembangkan sistem navigasi untuk gerak menyelam dengan model 3-DOF yaitu gerak surge, heave dan pitch dengan metode Ensemble Kalman Filter (EnKF). Hasil simulasi menunjukkan bahwa metode EnKF dapat digunakan sebagai estimator gerak 3-DOF dengan menghasilkan error 0.011 m/s untuk gerak surge dan 0.009 m/s untuk gerak heave serta 0.004 rad/s untuk gerak pitch, sedangkan error posisi menyelam 0.01 m.

Author Biographies

Teguh Herlambang, Universitas Nahdlatul Ulama Surabaya

Sistem Informasi, Fakultas Teknik

Subchan Subchan, Institut Teknologi Sepuluh Nopember

Departemen Matematika
Fakultas Matematika, Komputasi dan Sains Data

Hendro Nurhadi, Institut Teknologi Sepuluh Nopember

Departemen Teknik Mesin Industri
Fakultas Vokasi

References

Ermayanti, Z., Apriliani, E., Nurhadi, H., & Herlambang, T. (2016). Estimate and control position autonomous Underwater Vehicle based on determined trajectory using Fuzzy Kalman Filter method. ICAMIMIA 2015 - International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation, Proceeding - In Conjunction with Industrial Mechatronics and Automation Exhibition, IMAE. https://doi.org/10.1109/ICAMIMIA.2015.7508022

Herlambang, T., Djatmiko, E. B., & Nurhadi, H. (2015). Ensemble kalman filter with a square root scheme (EnKF-SR) for trajectory estimation of AUV SEGOROGENI ITS. International Review of Mechanical Engineering, 9(6). https://doi.org/10.15866/ireme.v9i6.6341

Herlambang, T., Djatmiko, E. B., & Nurhadi, H. (2016). Navigation and guidance control system of AUV with trajectory estimation of linear modelling. ICAMIMIA 2015 - International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation, Proceeding - In Conjunction with Industrial Mechatronics and Automation Exhibition, IMAE. https://doi.org/10.1109/ICAMIMIA.2015.7508028

Herlambang, T., Nurhadi, H., & Subchan. (2014). Preliminary numerical study on designing navigation and stability control systems for ITS AUV. In Applied Mechanics and Materials (Vol. 493). https://doi.org/10.4028/www.scientific.net/AMM.493.420

Herlambang, Teguh. (2017). Design of a Navigation and Guidance System of Missile with Trajectory Estimation Using Ensemble Kalman Filter Square Root ( EnKF-SR ). Computer Applications and Information Processing Technology (CAIPT), 2017 4th International Conference On, 1–7. IEEE.

Herlambang, Teguh, Mufarrikoh, Z., Karya, D. F., & Rahmalia, D. (2018). Estimation of water level and steam temperature using ensemble Kalman filter square root ( EnKF- SR ) Estimation of water level and steam temperature using ensemble Kalman filter square root ( EnKF-SR ). Journal of Physics: Conference Series, 0–7.

Herlambang, Teguh, & Nurhadi, H. (n.d.). Position Estimation of ITSUNUSA AUV Based on Determined Trajectory using Kalman Filter ( KF ). 15–22.

Herlambang, Teguh, & Subchan. (2018). ESTIMASI GERAK TRANSLASI AUTONOMOUS UNDERWATER VEHICLE DENGAN ENSEMBLE KALMAN FILTER (EnKF). Teknika: Engineering and Sains Journal, 2(1), 41–46.

Karya, D. F., Katias, P., & Herlambang, T. (2018). Stock price estimation using ensemble Kalman Filter square root method Stock price estimation using ensemble Kalman Filter square root method. 0–6.

Loebis, D., Sutton, R., Chudley, J., & Naeem, W. (2004). Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system. Control Engineering Practice, 12(12 SPEC. ISS.), 1531–1539. https://doi.org/10.1016/j.conengprac.2003.11.008

Motwani, A. (2012). Adaptive and interval Kalman filtering techniques in autonomous surface vehicle navigation: a survey.

Oktafianto, K., Herlambang, T., Mardlijah, & Nurhadi, H. (2016). Design of Autonomous Underwater Vehicle motion control using Sliding Mode Control method. ICAMIMIA 2015 - International Conference on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation, Proceeding - In Conjunction with Industrial Mechatronics and Automation Exhibition, IMAE. https://doi.org/10.1109/ICAMIMIA.2015.7508023

Panish, R., & Taylor, M. (2011). Achieving high navigation accuracy using inertial navigation systems in autonomous underwater vehicles. OCEANS 2011 IEEE - Spain, 1–7. https://doi.org/10.1109/Oceans-Spain.2011.6003517

Downloads

Published

2019-06-30

Issue

Section

Articles