ANALISIS STRATEGI PENJUALAN HASIL PRODUKSI *STAINLESS OPTIC* DENGAN METODE *FUZZY ANALYTICAL HIERARCHY PROCESS* (FAHP)

Dicky Enrayudah

Teknik Industri, Fakultas Teknik Universitas Maarif Hasim Latif, Sidoarjo, Indonesia Email: <u>dicky-enrayudah@student.umaha.ac.id</u>

ABSTRAK

CV. JMS yang merupakan sebuah perusahaan di bidang industri matrial. Demi efektifitas pemenuhan pesanan dari konsumen maka perusahaan harus efektif untuk memilih penjualan dalam permintaan bahan. Sistem ini di bangun dengan basis sistem pendukung keputusan yang memiliki kemampuan untuk memilih penjualan dengan menggunakan metode AHP dan logika *fuzzy-set* atau bias di sebut *Fuzzy Analytical Hirarchy Proses* (FAHP). Pendapatan penjualan CV.JMS sesudah mengalami peningkatan pendapatan yang cukup baik. Peningkatan pendapatan penjualan meningkat karena penjualan dengan menggunakan metode *Fuzzy Analytical Hirarchy Proses* (FAHP). Hasil akhir hasil penjualan mengalami peningkatan rekomendasi dalam bentuk perangkingan dengan keterangan nilai bobot pada masingmasing subkriteria. Hasil akhir menunjukan dari subkriteria yang sudah di tentukan pada keterang di atas adalah kriteria k4 memiliki bobot terbesar dibandingkan dengan kriteria lainnya dengan nilai bobot 0.13007657. Selanjutnya diikuti secara berturut-turut kriteria k2 dengan nilai bobot sebesar 0.11194143, k1 dengan nilai bobot 0.10463821, k10 dengan nilai bobot 0.10331148, k5 dengan bobot 0.10305564, k7 dengan bobot 0.09496359, k9 dengan bobot 0.09461781, k8 dengan bobot 0.08831298, k3 dengan bobot 0.08741903, k6 dengan bobot 0.08166326.

Kata kunci : FAHP, penjualan hasil produksi stainless optic.

PENDAHULUAN

CV. Jayalah Mahatma Sakti adalah usaha yang bergerak dalam penjualan stainless optic. Bertumbuhan CV. Jayalah Mahatma Sakti meningkat luar biasa di tengah-tengah yang begitu tajam akibat banyaknya penjualan pendatang baru, produksi stainless optic di CV. Jayalah Mahatma Sakti yang berada di Surabaya, dengan segala keunggulannya tetap mendominasi pasar sekaligus memahami kebutuhan pasar dan sekaligus memenuhi kebutuhan pelanggan yang tangguh, irit, ekonomis.

Strategi perusahaan yang efektif merupakan modal penting agar perusahaan mampu bersaing dan berkompetisi dalam persaingan tersebut, setiap perusahaan harus mampu meningkatkan kuantitatif dan kualitas produk yang telah ada, sehingga membuat perusahaan lebih berinovasi serta memilih komitmen yang kuat untuk dapat di terima oleh konsumen.

Kriteria yang digunakan dalam penelitian adalah kriteria vaitu kualitas warna, kualitas stenlees, presentase diskon. ketentuan pembayaran, ketepatan waktu pengiriman, pengiriman, ketepatan jumlah kemudian pergantian produk cacat, komunikasi, kemudahan perubahan jumlah dan waktu pesanan. Berdasarkan kriteria tersebut diperoleh kriteria

yang paling memuaskan yaitu diskon, kualitas stainless, ketepatan waktu pengiriman, jumlah pengiriman, kemudahan perubahan jumlah, produk cacat, komunikasi, waktu pemesanan, dan yang terakhir kualitas warna.

FAHP merupakan pendekatan sistematik untuk problem seleksi dan justifikasialternatif dengan menggunakan konsep teori komponen fuzzy dan analisis strutur hirarki (Kaharaman dkk, 2003). FAHP menutupi kelemaha yang terapat pada AHP, yaitu pemasalahan terhadap kriteria yang memiliki sifat subjektif lebih banyak. Penelitian yang dilakukan oleh (Fudhla, 2014). Pengembangan metode AHP selanjutnya adalah dengan menggunakan metode Fuzzy AHP dimana dengan metode ini dapat menutupi kekurangan pada metode AHP, yaitu unsur ketidakpastian. Suatu penelitian yang menggunakan metode Fuzzy AHP.

Fuzzy analytical hierarchy process adalah metode himpunan tradisional atau biasa (crisp set), segala susunannya digunakan sebagai hitam dan putih, benar atau salah dan memberikan tempat untuk sesuatu yang berwarna kelabu. Logika bernilai dua (binary logic) ini memang telah terbukti sangat aktif dan berhasil dalam menyelesaikan banyak persoalan. Tetapi ada sekelompok persoalan yang tidak dapat dipunahkan oleh logika tradisional ini, karena

membutuhkan suatu metode pendekatan yang berbeda. Persoalan ini biasanya kompleks dengan baik, serta biasanya keputusan di sertakan kepada manusia untuk memecahkan dari pada dioptimalkan.

METODE PENELITIAN

Metode analisis data yang digunakan adalah metode fuzzy analytical hierarchy prosess (FAHP). Data yang diperoleh melalui opservasi pada CV. Jayalah Mahatma Sakti dan wawancara secara langsung kepada pemilik CV. Jayalah Mahatma Sakti yang meliputi manajer utama perusahaan, kepada kepala bagian pengadaan barang, danmpegawai lain yang dapat memberikan data tersebut. Wawancara ini mendapatkan data yang akan di buat. Pada bagian ini terdapat 10 subkriteria dan 6 alternative data yang terkumpul dari wawancara dan studi opservasi yaitu berupa nilai dan kriteria kinerja penjualan akan dianalisis menggunakan metode FAHP. Langkah yang dilakukan dalam analisis data menggunakan metode FAHP

Fuzzy Analytical Hierarchy Proses (FAHP)

Tabel 1. Skala TFN dalam Variabel Linguistik

Skala Linguistik	Nilai kepentingan pada AHP	Bilangan fuzzy untuk fuzzy AHP	Skala TFN fuzzy (a,b,c)	Inverse
Sama penting	1	1	(1,1,1)	(1,1,1/2)
Sedikit lebih penting	3	3	(2,3,4)	(1/4,2/3,1/2)
Lebih penting	5	5	(4,5,6)	(1/6,1/5,1/4)
Sangat penting	7	7	(6,7,8)	(1/8,1/7,1/6)
Paling penting	9	9	(8,9,9)	(1/9,1/9,1/8)
Nilai antara dua pertimbangan yang berdekatan	2,4,6,8			

Sumber: (Firdolas et al (2006) dalam Fitria(2006))

Langkah-langkah metode *Fuzzy Analytical Hierarchy Proses* (FAHP)

- 1. Menyusun dan membuat suatu struktur hirarki dari permasalahan
- 2. Menentukan penilaian berpasangan antara kriteria dan alternatif dari tujuan hirarki.

Tabel 2 Skala penelitian perbandinganberpasangan

Itensitas	Keterangan			
Kepentingan				
1	Keua elemen sama penting			
3	Elemen yang satu lebih penting			
	daripada elemen yang lain			
5	Elemen yang satu lebih penting			
	daripada yang lainnya			
7	Satu elamen jelas lebih mutlak			
	penting daripada elemnen			
	lainnya			
9	Satu elemen mutlak penting			
	dari pada dari pada elemen			
	lainya			
2,4,6,8	Nilai-nilai antara dua nilai			
	pertimbangan-pertimbangan			
	vang berdekatan			

Sumber: Rochmasari, dkk (2010)

3. Menentukan uji konsistensi pada setiap matrik perbandingan berpasangan. Perhitungan bobot dilakukan apabila hasil kuisoner terbukti konsisten, yaitu jika nilai *Consistency Ratio(CR)* <0,1. Mendapatkan CR dilakukan perhitungan *(CI)* terlebih dahulu.

$$CI = \frac{\propto_{max-n}}{n-1} \qquad \dots (2)$$

n = banyaknya elemen

Menghitung Consistency Ratio (CR) dengan rumus

$$CR = \frac{CI}{RC}$$
(3)

CR = Consistency Ratio

CI = Consistency Index

IR = Indeks Random Consistency

- 5. Mengubah hasil pembobotan ke dalam bilangan *fuzzy* menggunakan skala TFN.
- 6. Menghitung nilai rata-rata *geometris fuzzy* dan bobot *fuzzy* dari setiap elemen dengan menggunakan rumus:

$$\tilde{r}_i = \tilde{a}_{i1} \times \tilde{a}_{i2} \times ... \times \tilde{a}_{in}(4)$$

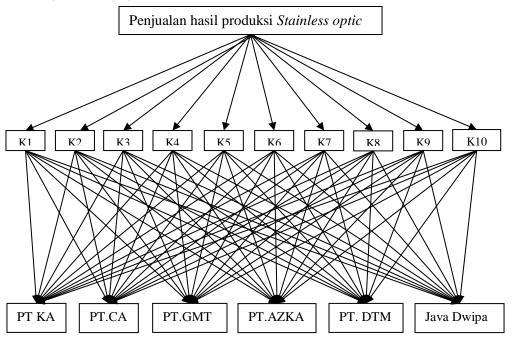
$$\tilde{w}_i = \tilde{r}_i \times (\tilde{r}_1 + ... \tilde{r}_n) - 1(5)$$
Dimana

 \widetilde{a}_{in} = Nilai Synthetic Comparison Fuzzy dari elemen – n

 \tilde{r}_i = Rata-rata geometris elemen ke i

 \widetilde{w}_i = Bobot *Fuzzy* elemen ke – i

N = Jumlah Elemen


- 7. Proses defuzzifikasi terhadap seluruh elemen (kriteria & sub kriteria) dengan menggunakan metode *Centre Of Area (COA)*.
 - $COA = (1 + m + u) / 3 \dots (6)$
- 8. Hasil perhitungan COA akan diurutkan berdasarkan nilai tertinggi menuju nilai yang terendah untuk mendapatkan hasil akhir, yang berarti alternatif pemasok yang mendapatkan nilai tertinggi adalah alternatif terbaik untuk dijadikan pilihan pemasok.
- 9. Jika hasil pembobotan akhir totalnya lebih dari 0.1, maka harus dilakukan normalisasi. Caranya dengan membagi masing-masing nilai kriteria dengan jumlah hasil pembobotan.

Langka yang dilakukan dalam menentukan prioritas kriteria adalah membuat matrik perbandinagn berpasangan. Untuk tahap ini dilakukan penelian perbandingan antara suatu kriteria dengan kriteria yang lain penilain perbandingan berpasangan bisa di lihat pada tabel

Langkah pertama yang dilakukan dalam penjualan hasil produksi stainless optic dengan menggunakan metode FAHP yaitu dengan menyusun hierarki dari pemasalah yang dihadapi. Dalam menyusun hierarki yang dilakukan terlebih dahulu yaitu menetukan tujuan (goal) dari pemasalahan yang dihadapi, selanjutnya yaitu menentukan kriteria, sub kreteria, dan alternative.

Langkah kedua dalam menentukan penjualan hasil produksi dalam penelitian ini 10 kriteria yaitu kualitas warna, kualitas stenlees, presentase diskon, ketentuan pembayaran, ketepatan waktu pengiriman, ketepatan jumlah pengiriman, kemudian pergantian produk cacat, komunikasi, waktu pesanan, kemudahan perubahan jumlah. Sedangkan sub kreteria terdari sub-sub kriteria dari delapan kriteria pemasok. Kriteria dari sub kriteria tersebut digunakan untuk menghasilkan alternative dari pemasalahan yang dihadapi.

Langka yang dilakukan dalam menentukan kriteria adalah membuat matrik perbandinagn berpasangan. Untuk tahap dilakukan penelian perbandingan antara suatu kriteria dengan kriteria yang lain penilain perbandingan berpasangan bisa di lihat pada tabel 3. Dari perbandingan berpasangan yang didapat pada tabel 3 data dihitung prioritas dari masing berdasarkan masing kriteria performanya terhadap tujuan. Caranya dengan membagi setiap elemen dari matriks dengan jumlah total. Kolomnya, kemudian merata - ratakan di setiap barisnya sehingga diperoleh bobot masing masing kriteria. Bobot kriteria ini yang kemudian digunakan untuk menilai prioritas dari setiap kriteria.

Gambar 1. Hirarki hasil penjualan produksi stainless

Tabel 3 Matrik hasil nialai prioritas kriteria

	k1	k2	k3	k4	k5	k6	k7	k8	k9	k10	Baris
k1	1	1	1	1	1	1	3	3	3	5	0.1412
k2	1	1	1	3	3	3	1	1	3	3	0.1684
k3	1	1	1	0.333	0.33	1	1	1	1	0.2	0.0672
k4	1	0.33	3	1	1	3	3	5	7	3	0.1755
k5	1	0.33	3	1	1	1	3	3	1	3	0.1228
k6	1	0.33	1	0.333	1	1	1	1	1	1	0.0685
k7	0.33	1	1	0.333	0.33	1	1	1	3	1	0.0712
k8	0.33	1	1	0.2	0.33	1	1	1	1	1	0.0603
k9	0.33	0.33	1	0.143	1	1	0.33	1	1	1	0.0524
k10	0.2	0.33	5	0.333	0.33	1	1	1	1	1	0.0724

Tabel 4 Matriks Perkalian Perhitungan Berpasangan Dengan Nilai Prioritas

	k1	k2	k3	k4	k5	k6	k7	k8	k9	k10	Prioritas
k1	0.14	0.17	0.07	0.176	0.12	0.07	0.21	0.18	0.16	0.362	1.6575
k2	0.14	0.17	0.07	0.527	0.37	0.21	0.07	0.06	0.16	0.217	1.9833
k3	0.14	0.17	0.07	0.059	0.04	0.07	0.07	0.06	0.05	0.014	0.7431
k4	0.14	0.06	0.2	0.176	0.12	0.21	0.21	0.3	0.37	0.217	2.0019
k5	0.14	0.06	0.2	0.176	0.12	0.07	0.21	0.18	0.05	0.217	1.4299
k6	0.14	0.06	0.07	0.059	0.12	0.07	0.07	0.06	0.05	0.072	0.7707
k7	0.05	0.17	0.07	0.059	0.04	0.07	0.07	0.06	0.16	0.072	0.8117
k8	0.05	0.17	0.07	0.035	0.04	0.07	0.07	0.06	0.05	0.072	0.6835
k9	0.05	0.06	0.07	0.025	0.12	0.07	0.02	0.06	0.05	0.072	0.5957
k10	0.03	0.06	0.34	0.059	0.04	0.07	0.07	0.06	0.05	0.072	0.8445

Tabel 5 Matriks Perhitungan Rasio Konsistensi Kriteria

Baris	Prioritas	Lamda
0.1412	1.65755	11.735773
0.1684	1.98332	11.77488
0.0672	0.74314	11.064336
0.1755	2.00187	11.405887
0.1228	1.42993	11.640342
0.0685	0.7707	11.255202
0.0712	0.81171	11.406223
0.0603	0.68354	11.32883
0.0524	0.59567	11.370621
0.0724	0.84448	11.657073
	MAX	11.77488
	CI	0.1972089
	CR	0.1760794

Dari bobot prioritas yang dipadaptakan nilai CR = 0.1760794. Karena nilai CR lebih kecil dari 0.1 maka perbandingan berpasangan tersebut dapat dianggap konsisten dan diterima. Setelah

didapatkan nilai CR lebih kecil dari 0.1 dengan pembobotan metode AHP, langkah selanjutnya adalah merubah pembobotan menggunakan metode FAHP.

Tabel 6 Matriks perbandingan berpasangan FAHP

	k1	k2	k3	k4	k5	k6	k7	k8	k9	k10
								1,3.2,	1,3.2,	
k1	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1	1,3.2,2	2	2	2,5.2,2
						1,3.2,			1,3.2,	
k2	1.1.1	1.1.1	1.1.1	1,3.2,2	1,3.2,2	2	1.1.1	1.1.1	2	1,3.2,2
										1.3,2.5,1.
k3	1.1.1	1.1.1	1.1.1	1,2.3,1	1,2.3,1	1.1.1	1.1.1	1.1.1	1.1.1	2
		1,2.3,	1,3.2,			1,3.2,		2,5.2,	3,7.2,	
k4	1.1.1	1	2	1.1.1	1.1.1	2	1,3.2,2	2	4	1,3.2,2
		1,2.3,	1,3.2,					1,3.2,		
k5	1.1.1	1	2	1.1.1	1.1.1	1.1.1	1,3.2,2	2	1.1.1	1,3.2,2
		1,2.3,								
k6	1.1.1	1	1.1.1	1,2.3,1	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1
					1.2,2.5,1.				1,3.2,	
k7	1,2.3,1	1.1.1	1.1.1	1,2.3,1	2	1.1.1	1.1.1	1.1.1	2	1.1.1
				1.3,2.5,1.	1.2,2.5,1.					
k8	1,2.3,1	1.1.1	1.1.1	2	2	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1
		1,2.3,		1.4,2.7,1.			1.2,2.5,1.			
k9	1,2.3,1	1	1.1.1	2	1.1.1	1.1.1	2	1.1.1	1.1.1	1.1.1
k1	1.3,2.5,1.	1,2.3,	2,5.2,		1.2,2.5,1.					
0	2	1	2	1,2.3,1	2	1.1.1	1.1.1	1.1.1	1.1.1	1.1.1

Tabel 7 Nilai Sistetis l, m, u

К	I	m	U
k1	0.08711	0.10665	0.12186
k2	0.08128	0.12577	0.13061
k3	0.08653	0.0726	0.10455
k4	0.10083	0.15606	0.13546
k5	0.08429	0.10863	0.11793
k6	0.08429	0.06625	0.09579
k7	0.08429	0.09212	0.11003
k8	0.0856	0.07812	0.10266
k9	0.08718	0.09283	0.10539
k10	0.09861	0.10096	0.11205

Dari tabel 8 di dibawah terlihat bahwa kriteria k4 memiliki bobot terbesar dibandingkan dengan kriteria lainnya dengan nilai bobot 0.13007657. Selanjutnya diikuti secara berturut - turut kriteria k2 dengan nilai bobot sebesar 0.11194143, k1 dengan nilai 0.10463821, k10 dengan nilai bobot bobot 0.10331148, k5 dengan bobot 0.10305564, k7 dengan bobot 0.09496359, k9 dengan bobot 0.09461781, k8 dengan bobot 0.08831298, k3 dengan bobot 0.08741903, k6 dengan bobot 0.08166326.

Tabel 8 Bobot Kriteri

K	bobot	normalisasi
k1	0.105209	0.10463821
k2	0.112552	0.11194143
k3	0.087896	0.08741903
k4	0.130786	0.13007657
k5	0.103617	0.10305564
k6	0.082108	0.08166326
k7	0.095481	0.09496359
k8	0.088794	0.08831298
k9	0.095134	0.09461781
k10	0.103875	0.10331148
jumlah	1.005452	1

PENUTUP

Peningkatan pendapatan penjualan meningkat karena penjualan dengan menggunakan metode Fuzzy Analytical Hirarchy Proses (FAHP). Sehingga pendapatan hasil penjualan mengalami peningkatan rekomendasi dalam bentuk perangkingan dengan keterangan nilai bobot pada masing-masing subkriteria. Hasil akhir menunjukan dari subkriteria yang sudah di tentukan pada keterang di atas adalah

kriteria k4 memiliki bobot terbesar dibandingkan dengan kriteria lainnya dengan nilai bobot 0.13007657. Selanjutnya diikuti secara berturut-turut kriteria k2 dengan nilai bobot sebesar 0.11194143, k1 dengan nilai bobot 0.10463821, k10 dengan nilai bobot 0.10331148, k5 dengan bobot 0.10305564, k7 dengan bobot 0.09496359, k9 dengan bobot 0.09461781, k8 dengan bobot 0.08831298, k3 dengan bobot 0.08741903, k6 dengan bobot 0.08166326. Bahwa dengan melalui menerapkan metode Fuzzy Analytical Hirarchy Proses (FAHP) penjualan lebih menguntungkan dan hasilnya sangat optimal.

UCAPAN TERIMA KASIH

Penulis mengucapkan terimakasih kepada bapak Prof. Dr. Agus Widodo selaku dosen pembimbing, Ibu Dini Retnowati, S.ST., MT., selaku Ketua Program Studi Teknik Indsutri Universitas Maarif Hasyim Latif Sidoarjo, Ibu Ika Widya Ardhyani,ST.,MT.IPM., selaku dosen wali Teknik Indsutri Universitas Maarif Hasyim Latif Sidoarjo, Bapak Moch. Anshori, ST., MT., IPM., dan ibu Nurul Aziza, ST., MT., IPM. Selaku dosen penguji dan selaku dosen teknik industri Universitas Maarif Hasyim Latif Sidoarjo. Atas segala saran, bimbingan, serta kesabaran selama penulisan artikel ini.

DAFTAR PUSTAKA

- Yenni Gunawan dan Dhyah Harjanti, SE., M. S. (2013). PENGELOLAAN DAN PENGEMBANGAN USAHA PENGOLAHAN KAYU PADA CV. KARYA JAYA NUSANTARA DI SURABAYA Yenni, 1(1).Ningsih, N., Pambudi, N. T., & Abadi, A. M. (2017). Penerapan Metode Fuzzy Mamdani untuk Memprediksi Penjualan Gula, 153–160.
- Kusrini., (2007), Konsep dan Aplikasi Sistem Pendukung Kepitusan, Edisi Pertama, Andi, Yogyakarta.
- Fudhla, A. F. (2014). Decision Making Of Hand Tractor Gear Box Designs. *Jurnal Teknik Industri*, 14(2), 101–115.