Optimasi Transesterifikasi Minyak Nyamplung dengan Katalis Heterogen: Studi Pengaruh Suhu dan Waktu Reaksi

Authors

  • Lilla Puji lestari Lilla Universitas Maarif Hasyim Latif
  • Yunita Nur Afifah Universitas Maarif Hasyim Latif
  • Sri Purwanto Universitas Maarif Hasyim Latif
  • Ferdy Firmansyah Universitas Maarif Hasyim Latif

##plugins.pubIds.doi.readerDisplayName##:

https://doi.org/10.51804/mmej.v7i1.16669

Keywords:

Biodiesel, Katalis Heterogen, Minyak Nyamplung, Spektroskopi GC-MS, Transesterifikasi

Abstract

Penggunaan bahan bakar fosil secara global telah menyebabkan masalah lingkungan dan ekonomi. Biodiesel sebagai sumber energi terbarukan tampak menjanjikan. Tanaman Nyamplung (Calophyllum inophyllum) memiliki kandungan minyak yang tinggi dan dapat tumbuh subur di tanah yang tandus, sehingga menjadi sumber biodiesel yang menjanjikan. Penelitian ini meneliti bagaimana perubahan suhu dan durasi reaksi mempengaruhi efisiensi transesterifikasi minyak Nyamplung berbasis katalis heterogen. Penelitian ini diharapkan dapat memberikan cara untuk mengoptimalkan transesterifikasi dan meningkatkan produksi biodiesel. Biji nyamplung diekstraksi dengan pelarut untuk diambil minyaknya. Katalis heterogen digunakan untuk transesterifikasi pada suhu 60°C, 70°C, dan 80°C dengan waktu reaksi 30-90 menit. GC-MS standar ASTM dan uji karakteristik fisikokimia digunakan untuk menilai produksi dan kualitas biodiesel. Efisiensi transesterifikasi secara signifikan dipengaruhi oleh suhu dan lama reaksi. Hasil biodiesel terbaik adalah 85% pada suhu 70°C selama 60 menit. Meningkatkan suhu di atas 70°C atau periode reaksi lebih dari 60 menit tidak meningkatkan hasil biodiesel dan bahkan dapat menurunkannya. Mengoptimalkan lama reaksi dan suhu dapat meningkatkan efisiensi transesterifikasi minyak nyamplung dengan menggunakan katalis heterogen. Penelitian ini menawarkan landasan ilmiah yang kuat untuk mengembangkan metode pembuatan biodiesel minyak Nyamplung yang lebih efisien dan berkelanjutan, sehingga dapat meningkatkan upaya dunia untuk menemukan sumber energi terbarukan.

Author Biographies

Lilla Puji lestari Lilla, Universitas Maarif Hasyim Latif

Teknik Mesin, Fakultas Teknik

Yunita Nur Afifah, Universitas Maarif Hasyim Latif

Teknik Mesin, Fakultas Teknik

Sri Purwanto, Universitas Maarif Hasyim Latif

Teknik Mesin, Fakultas Teknik

Ferdy Firmansyah, Universitas Maarif Hasyim Latif

Teknik Mesin, Fakultas Teknik

References

Andrifar, M., Goembira, F., Ulfah, M., Putri, R., Yuliarningsih, R., & Aziz, R. (2022). Optimization of sustainable biodiesel production from waste cooking oil using heterogeneous alkali catalyst. 16(2), 66–71. https://doi.org/10.22146/jrekpros.74373

Budianto, A., & Sumari, S. (2018). Biofuel production from nyamplung oil using catalytic cracking process with Zn-HZSM-5 / ? alumina catalyst BIOFUEL PRODUCTION FROM NYAMPLUNG OIL USING CATALYTIC CRACKING PROCESS WITH Zn-HZSM-5 / ? ALUMINA CATALYST. January 2015.

Gaurav, K., Kumari, S., & Dutta, J. (2021). Utilization of Waste Chicken Eggshell as Heterogeneous CaO Nanoparticle for Biodiesel Production. 12, 49–57.

Gunawan, S., Aparamarta, H. W., Taufany, F., Prayogo, A., Putri, H. A., & Wijaya, C. J. (2020). Separation and purification of triglyceride from nyamplung ( Calophyllum inophyllum ) seed oil as biodiesel feedstock by using continuous countercurrent extraction. 16(1), 18–22.

Juwono, H., Triyono, Sutarno, Triwahyuni, E., Ulfin, I., & Kurniawan, F. (2017). 1 production of biodiesel from seed oil of nyamplung (Calophyllum inophyllum) by AL-MCM-41 and its performance in diesel engine. Indonesian Journal of Chemistry, 17(2), 316–321. https://doi.org/10.22146/ijc.24180

Khurram, M. S., Al-muhtaseb, A. H., Inayat, A., & Shah, N. S. (2022). Enhancing the Catalytic Activity of Eggshell-Derived CaO Catalyst and Its Application in Biodiesel Production from Waste Chicken Fat.

Kurniati, S., Soeparman, S., Yuwono, S. S., & Hakim, L. (2018). Characteristics and Potential of Nyamplung ( Calophyllum inophyllum L .) Seed Oil from Kebumen , Central Java , as a Biodiesel Feedstock. International Research Journal of Advanced Engineering and Science, 3(4), 148–152.

Kurniati, S., & Syam, S. (2024). Enhancing Biodiesel Production from Nyamplung Oil?: Kinetic Analysis of Transesterification via Electromagnetic Induction Heating. 21–28.

Malabadi, R. B., Kolkar, K. P., & Chalannavar, R. K. (2023). Biodiesel production?: An updated review of evidence.

Qadariyah, L., Bhuana, D. S., Selaksa, R., As Shodiq, J., & Mahfud, M. (2018). Biodiesel production from Calophyllum inophyllum using base lewis catalyst. ASEAN Journal of Chemical Engineering, 18(1), 53–59.

Rachmaditasari, R., Darojat, M. I., & Mahfud, M. (2024). Production of biodiesel ( isopropyl ester ) from coconut oil by microwave assisted transesterification?: parametric study and optimization. May. https://doi.org/10.61435/ijred.2024.60174

Ramdhani, D. A., & Trisunaryanti, W. (2023). Study of green and sustainable heterogeneous catalyst produced from Javanese Moringa oleifera leaf ash for the transesterification of Calophyllum inophyllum seed oil. 8(2), 124–133.

Shahabi Mohammadabadi, S., Goli, M., & Naji Tabasi, S. (2022). Optimization of Bioactive Compound Extraction from Eggplant Peel by Response Surface Methodology: Ultrasound-Assisted Solvent Qualitative and Quantitative Effect. Foods, 11(20). https://doi.org/10.3390/foods11203263

Sisca, V., & Jamarun, N. (2020). Biodiesel Production from Waste Cooking Oil Using Catalyst Calcium Oxide Derived of Limestone Lintau Buo. 11(3), 8–14.

Zheng, D., Zhu, Y., Sun, X., Sun, H., Yang, P., Yu, Z., & Zhu, J. (2024). Equilibrium Moisture Mediated Esterification Reaction to Achieve Over 100 % Lignocellulosic Nanofibrils Yield. 2402777, 1–12. https://doi.org/10.1002/smll.202402777

Downloads

Published

2024-08-04

Issue

Section

Articles