PENGARUH KATALIS TiO2 TERHADAP EMISI GAS BUANG PEMBAKARAN DROPLET MINYAK KELAPA SAWIT

Authors

  • Wigo Ardi Winarko Akademi Teknik Alat Berat Indonesia
  • Rio Candra Aldiansyah Universitas Maarif Hasyim Latif
  • Yuke Hary Laksono Akademi Teknik Alat Berat Indonesia
  • Irfan Isdhianto Akademi Teknik Alat Berat Indonesia

##plugins.pubIds.doi.readerDisplayName##:

https://doi.org/10.51804/mmej.v6i2.16436

Keywords:

emisi gas buang, minyak nabati, katalis TiO2, pembakaran droplet

Abstract

Telah dilakukan penelitian tentang pengaruh variasi katalis TiO2 terhadap emisi gas buang hidrocarbon dan carbon monoksida  pembakaran droplet minyak kelapa sawit. Konsentrasi katalis yang diamati pada penelitian ini yaitu 1%, 2% dan 3%. Pengujian droplet dilakukan dengan menempatkan CPO sebanyak 1,25-1,31 ml pada thermocouple. Variabel droplet yang diamati meliputi evolusi api, emisi gas hidrocarbon dan carbon monoksida. Hasil penelitian menunjukkan bahwa penambahan katalis TiO2 pada minyak kelapa sawit memiliki dampak yang kurang baik pada pembakaran yang dihasilkan. Terbukti dimana dengan penambahan katalis TiO2 pada yang semakin besar berakibat pada semakin panjangnya umur nyala api serta terjadi peningkatan emisi gas HC dan CO yang dihasilkan. Ini terjadi karena adanya perbedaan titik didih yang dimiliki oleh CPO dan TiO2. Selain itu penambahan katalis TiO2 juga berdampak pada reaksi pembakaran yang semakin melambat akibat peningkatan viskositas CPO sehingga mengakibatkan pembakaran kurang sempurna serta timbul lebih banyak jelangga yang menyebabkan CO dan HC menjadi meningkat.

Author Biographies

Wigo Ardi Winarko, Akademi Teknik Alat Berat Indonesia

Jurusan Teknik Alat Berat

Rio Candra Aldiansyah, Universitas Maarif Hasyim Latif

Jurusan Teknik Mesin, Fakultas Teknik

Yuke Hary Laksono, Akademi Teknik Alat Berat Indonesia

Jurusan Teknik Alat Berat

Irfan Isdhianto, Akademi Teknik Alat Berat Indonesia

Jurusan Teknik Alat Berat

References

Bachtiar, H. H., Fachri, B. A., & Ilminnafik, N. (2019). Flame characteristics of diffusion of calophyllum inophyllum methyl ester on mini glass tube. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 57(1), 40–47.

Bautista, L. F., Vicente, G., Rodríguez, R., & Pacheco, M. (2009). Optimisation of FAME production from waste cooking oil for biodiesel use. Biomass and Bioenergy, 33(5). https://doi.org/10.1016/j.biombioe.2009.01.009

Bouriazos, A., Vasiliou, C., Tsichla, A., & Papadogianakis, G. (2015). Catalytic conversions in green aqueous media. Part 8: Partial and full hydrogenation of renewable methyl esters of vegetable oils. Catalysis Today, 247. https://doi.org/10.1016/j.cattod.2014.08.021

EUROPEAN COMMISSION. (2012). amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. 0288.

Grosselin, J. M., Mercier, C., Allmang, G., & Grass, F. (1991). Selective Hydrogenation of ?,?-Unsaturated Aldehydes in Aqueous Organic Two-Phase Solvent Systems Using Ruthenium or Rhodium Complexes of Sulfonated Phosphines. Organometallics, 10(7). https://doi.org/10.1021/om00053a014

Knothe, G. (2014). A comprehensive evaluation of the cetane numbers of fatty acid methyl esters. Fuel, 119. https://doi.org/10.1016/j.fuel.2013.11.020

Marlina, E., Nanlohy, H. Y., Gusti Ketut Puja, I., & Riupassa, H. (2021). Droplet combustion behavior of crude palm oil-carbon nanoparticles blends. IOP Conference Series: Materials Science and Engineering, 1034(1), 012039. https://doi.org/10.1088/1757-899x/1034/1/012039

Mustiadi, L., Wardana, I. N. G., Hamidi, N., & Sasongko, M. N. (2018). Efek Pembakaran Sebuah Droplet Dari Campuran Minyak Jarak Pagar Dengan Partikel Karbon Sekam Padi. Seminar Nasional Inovasi Dan Aplikasi Teknologi Di Industri 2018, 82–85.

Nanlohy, H. Y., Wardana, I. N. G., Hamidi, N., Yuliati, L., & Ueda, T. (2018). The effect of Rh3+ catalyst on the combustion characteristics of crude vegetable oil droplets. Fuel, 220, 220–232. https://doi.org/10.1016/j.fuel.2018.02.001

Nanlohy, H. Y., Wardana, I. N. G., Yamaguchi, M., & Ueda, T. (2020). The role of rhodium sulfate on the bond angles of triglyceride molecules and their effect on the combustion characteristics of crude jatropha oil droplets. Fuel, 279. https://doi.org/10.1016/j.fuel.2020.118373

Nisak, R. Z. K., Ilminnafik, N., & Junus, S. (2021). Performance and Emissions of Mixed Ethanol-Biodiesel Calophyllum Inophyllum Fueled Diesel Engine. International Journal of Emerging Trends in Engineering Research, 9(8), 1124–1128. https://doi.org/10.30534/ijeter/2021/16982021

Ogden, J. M., Steinbugler, M. M., & Kreutz, T. G. (1999). Comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development. Journal of Power Sources, 79(2). https://doi.org/10.1016/S0378-7753(99)00057-9

Pambudi, S., Ilminnafik, N., Junus, S., & Kustanto, M. N. (2021). Experimental study on the effect of nano additives ?al2o3 and equivalence ratio to Bunsen flame characteristic of biodiesel from nyamplung (Calophyllum Inophyllum). Automotive Experiences, 4(2). https://doi.org/10.31603/ae.4569

Perdana, D., Wardana, I. N. G., Yuliati, L., & Hamidi, N. (2018). The role of fatty acid structure in various pure vegetable oils on flame characteristics and stability behavior for industrial furnace. Eastern-European Journal of Enterprise Technologies, 5(8–95), 65–75. https://doi.org/10.15587/1729-4061.2018.144243

Saikia, K., Deb, B., & Dutta, D. K. (2014). Synthesis of cationic rhodium(I) and iridium(I) carbonyl complexes of tetradentate P(CH2CH2PPh2)3 ligand: An implication of steric inhibition and catalytic hydroformylation reaction. Journal of Molecular Catalysis A: Chemical, 381. https://doi.org/10.1016/j.molcata.2013.10.016

Sengkey, S. L., Jansen, F., & Wallah, S. (2011). Tingkat pencemaran udara CO akibat lalu lintas dengan model prediksi polusi udara skala mikro. Jurnal Ilmiah MEDIA ENGINEERING, 1(2), 119–126.

Sriyanto, J. (2018). Pengaruh tipe busi terhadap emisi gas buang sepeda motor. Automotive Experiences, 1(3). https://doi.org/10.31603/ae.v1i03.2362

Suryawanshi, S. R., & Pattiwar, J. T. (2018). Effect of TiO2 nanoparticles blended with lubricating oil on the tribological performance of the journal bearing. Tribology in Industry, 40(3). https://doi.org/10.24874/ti.2018.40.03.04

Vasiliou, C., Bouriazos, A., Tsichla, A., & Papadogianakis, G. (2014). Production of hydrogenated methyl esters of palm kernel and sunflower oils by employing rhodium and ruthenium catalytic complexes of hydrolysis stable monodentate sulfonated triphenylphosphite ligands. Applied Catalysis B: Environmental, 158–159. https://doi.org/10.1016/j.apcatb.2014.04.046

Winarko, W. A., Ilminnafik, N., Kustanto, M. N., & Perdana, D. (2022). Karakteristik pembakaran droplet minyak nabati Indonesia. 12(2), 103–110. https://doi.org/10.29303/dtm.v12i2.540

Downloads

Published

2024-01-16